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7400 devices such as the 74LS138. As digital systems grow more complex, the chances increase that
suitable off-the-shelf logic will be either unavailable or impractical to use. The answer is to design
and implement custom logic rather than relying solely on a third party to deliver a solution that does
exactly what is needed.

Logic design techniques differ according to the scale of logic being implemented. If only a few
gates are needed to implement a custom address decoder or timer, the most practical solution may be
to write down truth tables, extract Boolean equations with Karnaugh maps, select appropriate 7400
devices, and draw a schematic diagram. This used to be the predominant means of designing logic
for many applications, especially where the cost and time of building a custom IC was prohibitive.
The original Apple and IBM desktop computers were designed this way, as witnessed by their rows
of 7400 ICs.

When functions grow more complex, it becomes awkward and often simply impossible to imple-
ment the necessary logic using discrete 7400 devices. Reasons vary from simple density con-
straints—how much physical area would be consumed by dozens of 7400 ICs—to propagation delay
constraints—how fast a signal can pass through multiple discrete logic gates. The answer to many of
these problems is custom and semicustom logic ICs. The exact implementation technology differs
according to the cost, speed, and time constraints of the application, but the underlying concept is to
pack many arbitrary logic functions and flip-flops into one or more large ICs. An 

 

application specific
integrated circuit

 

 (ASIC) is a chip that is designed with logic specific to a particular task and manu-
factured in a fixed configuration. A 

 

programmable logic device 

 

(PLD) is a chip that is manufactured
with a programmable configuration, enabling it to serve in many arbitrary applications.

Once the decision is made to implement logic within custom or semicustom logic ICs, a design
methodology is necessary to move ahead and solve the problem at hand. It is possible to use the
same design techniques in these cases as used for discrete 7400 logic implementations. The trouble
with graphical logic representations is that they are bulky and prone to human error. Hardware de-
scription languages were developed to ease the implementation of large digital designs by represent-
ing logic as Boolean equations as well as through the use of higher-level semantic constructs found
in mainstream computer programming languages.

Aside from several proprietary HDLs, the major industry standard languages for logic design are

 

Verilog 

 

and 

 

VHDL 

 

(Very high speed integrated circuits HDL). Verilog began as a proprietary product
that was eventually transformed into an open standard. VHDL was developed as an open standard
from the beginning. The two languages have roughly equal market presence and claim religious dev-
otees on both sides. This book does not seek to justify one HDL over the other, nor does it seek to
provide a definitive presentation of either. For the sake of practicality, Verilog is chosen to explain
HDL concepts and to serve in examples of how HDLs are used in logic design and implementation.

HDLs provide logical representations that are abstracted to varying degrees. According to the en-
gineer’s choice or contextual requirements, logic can be represented at the 

 

gate/instance 

 

level, the

 

register transfer level 

 

(RTL), or the 

 

behavioral 

 

level. Gate/instance-level representations involve the
manual instantiation of each physical design element. An element can be an AND gate, a flop, a mul-
tiplexer, or an entire microprocessor. These decisions are left to the engineer. In a purely gate/in-
stance-level HDL design, the HDL source code is nothing more than a glorified list of instances and
connections between the input/output ports of each instance. The Verilog instance representation of

 is shown in Fig. 10.1. It is somewhat cumbersome but provides full control over
the final implementation.

The brief listing in Fig. 10.1 incorporates many basic pieces of a generic Verilog module. First,
the module is named and declared with its list of ports. Following the port list, the ports are defined
as being inputs or outputs. In this case, the ports are all single net vectors, so no indices are supplied.
Next is the main body that defines the function of the module. Verilog recognizes two major variable
types: 

 

wires 

 

and 

 

regs

 

. Wires simply connect two or more entities together. Regs can be assigned val-
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ues at discrete events, as will be soon discussed. When ports are defined, they are assumed to be
wires unless declared otherwise. An output port can be declared as a type other than wire.

Being that this example is a gate/instance-level design, all logic is represented by instantiating
other modules that have been defined elsewhere. A module is instantiated by invoking its name and
following it with an instance name. Here, the common convention of preceding the name with “u_”
is used, and multiple instances of the same module type are differentiated by following the name
with a number. Individual ports for each module instance are explicitly connected by referencing the
port name prefixed with a period and then placing the connecting variable in parentheses. Ports can
be implicitly connected by listing only connecting variables in the order in which a module’s ports
are defined. This is generally considered poor practice, because it is prone to mistakes and is difficult
to read.

HDL’s textual representation of logic is converted into actual gates through a process called 

 

logic
synthesis

 

. A synthesis program parses the HDL code and generates a 

 

netlist 

 

that contains a detailed
list of low-level logic gates and their interconnecting nets, or wires. Synthesis is usually done with a
specific implementation target in mind, because each implementation technology differs in the logic
primitives that it provides as basic building blocks. The primitive library for an ASIC will differ
from that of a PLD, for example. Once synthesis is performed, the netlist can be transformed into a
working chip and, hence, a working product.

module my_logic ( 
  A, B, C, Y 
); 
 
input A, B, C; 
output Y; 
 
wire and1_out, and2_out, notA; 
 
and_gate u_and1 ( 
  .in1 (A), 
  .in2 (B), 
  .out (and1_out) 
); 
 
not_gate u_not ( 
  .in  (A), 
  .out (notA) 
); 
 
and_gate u_and2 ( 
  .in1 (notA), 
  .in2 (C), 
  .out (and2_out) 
); 
 
or_gate u_or ( 
  .in1 (and1_out), 
  .in2 (and2_out), 
  .out (Y) 
); 
 
endmodule 

FIGURE 10.1 Verilog gate/instance level design.
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